The world's scientific and social network for malaria professionals
Subscribe to free Newsletter | 10858 malaria professionals are enjoying the free benefits of MalariaWorld today

pfhrp3

Deletions of pfhrp2 and pfhrp3 genes were uncommon in rapid diagnostic test-negative Plasmodium falciparum isolates from Uganda

January 6, 2021 - 11:42 -- Open Access
Author(s): 
Sam L. Nsobya, Andrew Walakira, Philip J. Rosenthal, et al.
Reference: 
Malaria Journal 2021 20:4, 2 January 2021

Rapid diagnostic tests (RDTs) play a key role in malaria case management. The most widely used RDT identifies Plasmodium falciparum based on immunochromatographic recognition of P. falciparum histidine-rich protein 2 (PfHRP2). Deletion of the paralogous pfhrp2 and pfhrp3 genes leads to false-negative PfHRP2-based RDTs, and has been reported in P. falciparum infections from South America and Africa. However, identification of pfhrp2/pfhrp3 deletions has usually been based only on failure to amplify these genes using PCR, without confirmation based on PfHRP2 protein expression, and understanding of the true prevalence of deletions is incomplete.

Evaluation of Histidine-Rich Proteins 2 and 3 Gene Deletions in Plasmodium falciparum in Endemic Areas of the Brazilian Amazon

January 1, 2021 - 15:51 -- Open Access
Author(s): 
Góes L, Chamma-Siqueira N, Peres JM, Nascimento JM, Valle S, Arcanjo AR, Lacerda M, Blume L, Póvoa M, Viana G
Reference: 
Int J Environ Res Public Health. 2020 Dec 26;18(1):E123

Histidine-rich proteins 2 and 3 gene (pfhrp2 and pfhrp3) deletions affect the efficacy of rapid diagnostic tests (RDTs) based on the histidine-rich protein 2 (HRP2), compromising the correct identification of the Plasmodium falciparum species. Therefore, molecular surveillance is necessary for the investigation of the actual prevalence of this phenomenon and the extent of the disappearance of these genes in these areas and other South American countries, thus guiding national malaria control programs on the appropriate use of RDTs. This study aimed to evaluate the pfhrp2 and pfhrp3 gene deletion in P. falciparum in endemic areas of the Brazilian Amazon.

Community-based surveys for Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions in selected regions of mainland Tanzania

November 4, 2020 - 15:14 -- Open Access
Author(s): 
Catherine Bakari, Sophie Jones, Deus S. Ishengoma, et al.
Reference: 
Malaria Journal 2020 19:391, 4 November 2020

Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania.

Misdiagnosis of imported falciparum malaria from African areas due to an increased prevalence of pfhrp2/pfhrp3 gene deletion: The Djibouti case

September 2, 2020 - 08:33 -- Open Access
Author(s): 
Iriart X, Menard S, Chauvin P, Mohamed HS, Charpentier E, Mohamed MA, Berry A, Aboubaker MH
Reference: 
Emerg Microbes Infect. 2020 Sep 1:1-9

A case of imported falciparum malaria acquired in Djibouti was diagnosed in 2019 in the Toulouse University Hospital (France) by microscopy and a positive P. falciparum specific real-time PCR (qPCR).

Molecular surveillance reveals the presence of pfhrp2 and pfhrp3 gene deletions in Plasmodium falciparum parasite populations in Uganda, 2017–2019

August 27, 2020 - 08:09 -- Open Access
Author(s): 
Agaba B. Bosco, Karen Anderson, Karryn Gresty, et al
Reference: 
Malaria Journal 2020 19:300, 26 August 2020

Histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) are the only RDTs recommended for malaria diagnosis in Uganda. However, the emergence of Plasmodium falciparum histidine rich protein 2 and 3 (pfhrp2 and pfhrp3) gene deletions threatens their usefulness as malaria diagnostic and surveillance tools. The pfhrp2 and pfhrp3 gene deletions surveillance was conducted in P. falciparum parasite populations in Uganda.

Multiplex malaria antigen detection by bead-based assay and molecular confirmation by PCR shows no evidence of Pfhrp2 and Pfhrp3 deletion in Haiti

December 3, 2019 - 15:31 -- Open Access
Author(s): 
Camelia Herman, Curtis S. Huber, Sophie Jones, Laura Steinhardt, Mateusz M. Plucinski, Jean F. Lemoine, Michelle Chang, John W. Barnwell, Venkatachalam Udhayakumar and Eric Rogier
Reference: 
Malaria Journal 2019 18:380, 27 November 2019

The Plasmodium falciparum parasite is the only human malaria that produces the histidine-rich protein 2 and 3 (HRP2/3) antigens. Currently, HRP2/3 are widely used in malaria rapid diagnostic tests (RDTs), but several global reports have recently emerged showing genetic deletion of one or both of these antigens in parasites. Deletion of these antigens could pose a major concern for P. falciparum diagnosis in Haiti which currently uses RDTs based solely on the detection of the HRP2/3 antigens.

Medical Condition: 

Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010–2019

November 11, 2019 - 16:08 -- Open Access
Author(s): 
Bosco B. Agaba, Adoke Yeka, Sam Nsobya, Emmanuel Arinaitwe, Joaniter Nankabirwa, Jimmy Opigo, Paul Mbaka, Chae Seung Lim, Joan N. Kalyango, Charles Karamagi and Moses R. Kamya
Reference: 
Malaria Journal 2019 18:355, 6 November 2019

Malaria rapid diagnostic tests based on histidine-rich protein-2 have played a vital role in improving malaria case management and surveillance particularly in Africa, where Plasmodium falciparum is predominant. However, their usefulness has been threatened by the emergence of gene deletion on P. falciparum histidine rich protein 2 (pfhrp2) and P. falciparum histidine rich protein 3 (pfhrp3). 

Continent: 
Subscribe to RSS - pfhrp3