Characterizing the molecular and metabolic mechanisms of insecticide resistance in Anopheles gambiae in Faranah, Guinea
In recent years, the scale-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) has greatly reduced malaria transmission. However, malaria remains a global public health concern with the majority of the disease burden in sub-Saharan Africa. Insecticide resistance is a growing problem among Anopheles vector populations, with potential implications for the continued effectiveness of available control interventions. Improved understanding of current resistance levels and underlying mechanisms is essential to design appropriate management strategies and to mitigate future selection for resistance.